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Abstract - This paper presents a game theoretic 

approach for the management of multiple mobile 

sensors. Our approach can maintain tracks of smart 

targets under possibly adversarial environments. To 

ensure computational tractability, sensor management is 

divided into sensor assignment and sensor scheduling. 

In sensor assignment, covariance control and 

information theoretic sensor assignment are combined 

logically. In sensor scheduling, the targets are modeled 

as entities with different levels of intelligence, which will 

invoke different strategies of sensor scheduling. 

Simulation results demonstrate the effectiveness of the 

proposed sensor management scheme.  

 

Keywords: Sensor management, game theory, covariance 

control, information theoretic sensor assignment.  

 

1 Introduction 

    When using multiple sensors in an automatic target 

recognition (ATR) and tracking system, efficient sensor 

management strategy plays an important role in achieving 

high performance for the overall system. According to [1], 

sensor management can be treated as a general strategy 

that controls sensing actions, including generating, 

prioritizing, and scheduling sensor selections and actions. 

Specifically, sensing actions include but are not limited to 

illuminating a target, selecting sensing mode, scanning an 

area for new targets, etc. Usually, the input to the sensor 

management system can be a target state estimate and the 

corresponding error covariance from the tracking module 

as well as target features/IDs from the ATR module. The 

output of the sensor management system can be sensor-

target assignment and schedule of sensing actions in the 

future.  

    Usually, sensor management has to deal with two 

important topics, namely, sensor assignment and sensor 

scheduling, although they are often tightly coupled. Sensor 

assignment decides which sensor or sensor combination 

will be assigned to which target or which area. Sensor 

scheduling determines when and which sensor will take 

what action (e.g., pointing to which target or which area). 

In other words, sensor assignment mainly deals with the 

issues over sensor/target/environment/space horizon, while 

sensor scheduling mainly determines the sensing actions 

over the time horizon. In real world applications, sensor 

assignment and sensor scheduling are often optimized 

jointly to help improve ATR and tracking performance, 

reduce the requirement of system resources, and even 

reduce risks in the context of persistent surveillance.  

Likewise, sensor management, based on either predictions 

or cost minimization functions, ensures that the right 

sensor is activated to illuminate the target of interest for a 

given spatial/spectral environmental condition.  Knowing 

all possible scenarios is difficult to do a priori, so care 

must be taken in tradeoffs between (1) online versus a off-

line (i.e. models) analysis, (2) metrics for arbitrating 

between sensor selections, and (3) search versus evidence 

maintenance. 

    The following input-related issues should be considered 

when designing a sensor management module. 

I1) number of sensors and sensor information, such as 

types, ranges, modes, capacity, etc. 

I2) number of targets and target information, such as 

types, related tracks, whether target being  

intelligent in its behavior modes, etc. 

I3)  terrain , weather, and illumination conditions.  

I4) physical constraints such as energy limit, operation 

time limit, communication constraints, bandwidth, 

etc. 

I5) user requirements such as computational load, 

centralized/decentralized configurations, detection 

probabilities, false alarm probabilities, 

tracking/classification accuracies, risks, etc. 

 

    Possible outputs of a sensor management module 

include decisions on 

O1) which sensor (combination) is assigned to which 

target (combination) or which area at which period 
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O2) which sensor should be in which mode, at what 

revisit time period, and with what signals being 

emitted, etc.  

O3) which sensor should illuminate which direction 

and/or move in which direction (if mobile). 

O4) which exploitation or classifier (or tracking) 

algorithm to invoke for a given condition. 

O5) what fusion information metrics should be delivered 

to the user. 

 

    It should be noted that since considering so many issues 

(I1~I5 and O1~O5) simultaneously is too difficult, real 

world applications of sensor management algorithms can 

only address some of the issues listed above. Furthermore, 

the complexity of the problem space requires intelligent 

strategies to focus the sensor management requiring a host 

of metrics to afford effective optimization. 

    Most of the existing sensor assignment algorithms try to 

select sensors/targets so that a performance metric is 

optimized [1]. Such a performance metric, i.e., the 

objective function, can be the trace of each target’s state 

estimation error covariance weighted by target importance 

[2], the information gain [3], or some objective based on 

the covariance control [4]. Currently, the most popularly 

used sensor assignment algorithms are either based on the 

information theoretic approach [3] or the covariance 

control approach [4]. 

    The Information theoretic approach tries to maximize 

the information gain [1], which is a data-independent 

indicator of the usefulness of obtaining the target 

information through one observation at time k defined by 

1 | ( | 1) |
( ( | 1), ( | )) ln

2 | ( | ) |

−
− =i

i

P k k
I P k k P k k

P k k
       (1) 

where ( , )I ⋅ ⋅  is the information gain in the Fisher sense, 

( | 1)P k k −  is the prior error covariance of the target 

track, and ( | )iP k k  is the  posterior covariance after 

applying the estimate of the i -th sensor combination. 

Usually, the sensor combination which can achieve the 

maximum information is assigned to this target or a 

combination of targets.   

    Covariance control method starts with the goal related 

to the estimation of error covariance which can be 

determined by specific mission requirements such as the 

desired covariance to locate an enemy target before 

launching a rocket. Then one seeks to optimize specific 

covariance related objective function such as the 

eigenvalue/minimum goal [4]: 

{ }: 0

arg min | |,   

ev i d i

ev i i ev
i

P P

i

Φ = Φ − >

= Φ Φ ∈Φ
               (2) 

where 
iΦ  is the number of sensors in i -th sensor 

combination, dP  is the desired covariance, and iP  is the 

covariance provided by i -th sensor combination. Since for 

a multi-sensor multi-target system a whole binominal 

combination search will require a computational load on 

the order of (2 )sN

tNο , where sN  is the number of the 

sensors and tN  is the number of targets, greedy 

algorithms (or “myopic”) are often applied to reduce the 

computational load to 
2( )s tO N N .  

    In general, information based approaches try to 

maximize the utility of available sensors, while covariance 

control approaches try to meet specific goals with 

minimum sensor resources such as sensor numbers. As 

stated in a research about comparison between these two 

approaches [4], when there are many more sensors than 

targets, information based approaches work better. In 

contrast, covariance control based approaches work better 

when there are relative fewer sensors. To find an efficient 

algorithm for unknown or time varying number of targets 

is still an open problem and solutions are often scenario-

specific. 

    Sensor scheduling often relies on advanced optimization 

techniques such as dynamic programming [5] and Q-

learning [6], which is often applied to provide approximate 

values. A nonlinear particle filter method [7] is also 

frequently applied to target state estimation with nonlinear 

system dynamics. It can be combined with Q-learning, to 

generate various hypotheses over one look-ahead horizon. 

Theoretically speaking, longer look-ahead horizon implies 

“non-myopic” and can provide better performance over the 

long run. However, when the look-ahead horizon is too far, 

it will have to rely on too many predicted covariance’s or 

information gains thus being sensitive to modeling error. 

In addition, an overly stretched look-ahead horizon often 

implies unaffordable computational load. As a result, one 

has to carefully choose a reasonable time horizon for the 

problem at hand to avoid degradation of overall 

performance.  

    Currently, sensor assignment and scheduling methods 

have been extensively studied and the field becomes 

relatively mature. Many researches have focused on fusing 

more knowledge (such as target motion modes and road 

network topology) as well as designing specific 

performance metrics (such as target/sensor valuation) and 

determining the appropriate criteria (such as horizon 

length and hypothesis determination thresholds) more 

suitable to specific applications with various practical 

constraints (such as communication capacity/delay and 

terrain conditions) [8][9]. Some researchers also 

introduced cooperative game theory to help improve 

performance under decentralized situation [10][11]. Most 

of these efforts are confined to different practical 

applications and greatly contribute to the ATR and 

tracking research. However, two issues concern 

“intelligent” targets and tradeoffs between fusion 

performance and system requirements. 

    Generally speaking, the approaches discussed above 

work well under traditional non-intelligent ATR and 

tracking environments in which there are no “intelligent 
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targets”. Here an intelligent target (also called a “smart 

target”) is a target that can be aware of or even rationalize 

whether it has been detected/tracked or will be 

detected/tracked, and can engage in launch some specific 

actions accordingly to prevent the sensors from accurately 

detecting/tracking it.  Recently, more and more targets 

with intelligent behaviors are emerging in ATR and 

tracking area research, such as automobile drivers with 

counter-speed radar, enemy tanks with radar wave 

detectors, etc. Tracking such targets often requires rational 

analysis on both sides using non-cooperative game theory 

[11]. Moreover, sometimes such smart targets might use 

random strategies in their actions. For example, although a 

target knows that it has been tracked, it might not always 

choose the best action obtained using game theoretic 

analysis, say choose the best action with probability 0.5 

and stay dumb otherwise. This will make the prediction 

using purely game theoretic approach faces additional 

difficulty in modeling the rationality of the opponent.   

    The second issue of sensor management in modern 

tracking applications is the tradeoff between different 

performance metrics and system requirements. For 

example, for a practical tracking system to monitor smart 

targets, many conflicting interests need to be considered: 

the competition between track maintenance performance 

and computational load, the tradeoff between short term 

accuracy and long term track continuity, etc. In addition, a 

practical sensor management module should not be too 

complex, no matter what is implied as theoretically 

optimum, implementation complete, or operational robust. 

As a result, full horizon search for the best strategy is 

often infeasible. For computational efficiency, some 

suboptimal  (e.g. approximation) approaches have to be 

applied for sensor resource management. However, 

different suboptimal approaches often have different 

strength and weakness thus only suitable for specific 

applications. For example, the information theoretic 

approach (usually applied with pure greedy algorithm) 

might cause some targets to starve
1
  while other targets are 

covered with more sensors than necessary. A pure 

covariance control approach (usually applied with need-

based greedy algorithm [12]) goes to the other extreme 

and can save sensor resources when there are relatively 

limited sensor resources, but often performs worse than 

pure greedy algorithm when there are more than adequate 

sensor resources. An algorithm that can inherit the strength 

and avoid the weakness of both methods is desired. 

 

2 Hierarchical Sensor Management   

    We propose a hierarchical sensor management (HSM) 

scheme for both sensor assignment and sensor scheduling 

to monitor smart targets. Sensor management will assign 

sensors to specific targets or areas, and sensor scheduling 

                                                 
1 Here starve means no sensor resource is assigned to supervise such 

targets. 

will schedule the actions (including sensor motion if the 

sensor is mobile) for each sensor.  HSM integrates both the 

information theoretic approach and covariance control 

based method so that the system can perform well in 

environments the changing number of targets and tracking 

performance requirements. For sensor scheduling, we 

consider both the cases with ideal rationality on both sides 

and the cases in which smart targets act with some 

randomized strategy. A learning mechanism, in 

conjunction with possible classification knowledge and 

game theoretic calculation, will be used to automatically 

identify whether the target responds with randomized 

strategy and if yes, what is the extent of randomness. The 

system is suitable for managing heterogeneous sensor 

networks including airborne, space based, ground based 

and sea based EO/IR/radar sensors [13] with possible 

terrain constraints. An illustrative scenario of a sensor 

management system with networked heterogeneous sensors 

is shown as follows (Figure 1). 

 

 

Figure 1: An illustrative sensor management scenario. 

2.1 Sensor Assignment 

    The basic idea of our HSM sensor assignment approach 

is a two step procedure: We first apply covariance control, 

then switch to information based algorithm after all 

existing covariance requirements are satisfied. In this way 

we can largely take the advantages but avoid shortcomings 

of both methods simultaneously. 

    To understand the underlying philosophy, we first 

provide the basic logics of the two existing sensor 

assignment algorithms. A simple description of covariance 

control algorithms’ logic is: treat the targets as 

“customers” with explicit and fixed needs and do what we 

need with the least amount of resources. This is because 

even if we can maximize the total information gain, but the 

needs of customers can not be completely satisfied, this 

assignment is still not a good solution. On the other hand, 

information theoretic approaches tend to treat the target (or 

sensors) as “customers” with inexplicit needs and try to 
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maximize the information gain, which is assumed to be the 

unique need of all customers. As a result, when there are 

still explicit requirements unsatisfied, covariance control is 

a good choice. When all explicit requirements have 

already been satisfied and there are still sensing resources 

available, information theoretic assignment is more 

appropriate. In this way, both approaches can be integrated 

and the transition is naturally linked to supply and demand 

analysis. The computational load will be compatible with 

the two methods thus for sure tractable.  We describe the 

HSM algorithm next.   

    For a scenario with sN  heterogeneous sensors and tN  

targets
2
, our sensor assignment algorithm is summarized as 

follows: 

 

    Step 1: If there is no explicit target requirements, go to 

step 6. Else, calculate the “needs” ( )n t  for target i ’s 

according to 

 

( ) min{eig[ ( | 1)]}(10 )= − − − −d i pn i P P k k i         (3) 

where pi  is the priority of target i . Note that the number 

10  in (10 )pi−  is an example recommended by [4] for 

general cases and can be adjusted according to specific 

applications. For example, if there are only three different 

priorities, we may set it to 4. The reason that we do not set 

it to 3 is to avoid such need being zero. To replace 

(10 )pi−  directly with target importance is also a feasible 

approach. Equation (3)’s idea is to meet the desired 

covariance along the axis corresponding to the worst case 

difference in eigenvalue. In this way, more information 

about the error covariance can be utilized than in using 

trace or determinant [2]. 

 

    Step 2: Select the target with the largest “need” as the 

target we will consider. 

 

    Step 3: Calculate the updated a posterior covariance 

resulted from using a sensor j  according to 

( | , ) ( ( , ) ( )) ( | 1)i i iP k k j I K k j H j P k k= − −      (4) 

The covariance for covering an area can be calculated 

according to the strategy in [3][14]. 

 

    Step 4: Assign the sensor that maximizes 

min{eig[ ( ) ( | , )]}−d iP t P k k j               (5) 

to target i . 

 

    Step 5: Do the following updates 

( | , ) ( | 1)→ −i iP k k j P k k  

min{eig[ ( ) ( | , )]}(10 ) ( )− − − →d i pP t P k k j i n i  

                                                 
2
 They can also be specific target entities or individual search areas. 

then go to Step 1. 

 

    Step 6: If there are no available sensors, go to Step 8. 

Otherwise, for all available sensors in available sensor set 

S , calculate reward to sensor set  j  

( )1
1( , ) (1 ) 1 expα α α η

− −
− ∈

 = + − − −
  ∑

j

T

j j j j j j j k ij ij ijk S
r S S S h R h  

(6) 

where [0,1]jα ∈ , 
jS  is the size of the target subset, 

kη  

is the target information weight determined by the target 

importance and anomaly levels fed back from last 

calculation, jS−  is the complementary action subspace 

excluding jS  from S , and jr  is designed to take values 

between 0 and 1.  

 

    Step 7:  Select 
*

jS S∈  to maximize the utility 

( , )j j jr S S− , given others’ actions jS− . Announce its 

decision *
jS  to others, so that other sensors can update. 

Then go to Step 6.  For Step 6 and Step 7, a simplest 

illustrative procedure can be obtained by considering only 

one sensor and one target each time. 

 

    Step 8:  Sensor assignment ends. 

 

2.2 Sensor Scheduling 

    For any assigned sensor-target pair, sensor scheduling 

will provide plans for specific sensor actions over a time 

horizon H.  Unlike approaches in [15] and [16], which 

applied Q-learning [6] or one step look-ahead search 

strategy, we apply game theory and Markov decision 

process (MDP) [15] to deal with smart targets and search 

for the best sensing strategy with time horizon H ≥ 1. 

Assume that the sensor has different sensing modes, such 

as moving target indicator (MTI), high range resolution 

(HRR) and/or any other available modes. Similarly, 

assume that targets have more than one mode which can 

cause different measurement covariance. Both sensor and 

target might be able to move along different directions (if 

mobile), subjecting to some terrain constraints or other 

requirements.  

    For fully rational targets
3
, our approach will apply game 

theory to generate action plans. The payoff function which 

will be maximized by the sensor is given by 

 
1

1 ( )
k H

s n s

k

n k

nβ
+ −

−

=

Ψ = Ω∑                    (7) 

                                                 
3
 Here we assume that those rational targets will always choose the best 

action obtained using game theory assuming their opponents have 

complete knowledge of the game. 
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where [0,  1]β ∈  is the time discount factor, ( )s
nΩ  is the 

payoff at the n th step. Here the payoff function includes 

the information gain related to the error covariance and 

discounted by the carefully normalized costs to be 

explained next. An issue in payoff function design is how 

to convert the numbers in different units into a comparable 

payoff function. A common practice is to select some 

normalizing factors/matrices and transform all terms into 

unitless quantities where specific techniques are used for 

different terms [4]. We use the payoff for sensor s at the k-

th step given by 

mod mod move move

mod

mod mode move

mod

1
( )

det( ( ( ), ( ), ( ), ( )))

         ( ( ), ) ( ) ( )

         ( ) ( ( ), ) ( ( ), ( ), )

         ( ( ), ) ( ) ( )

         ( )

s
k

t
k

s

e e

s s s

o e c

ts s s

l e m

t t t

o e c

tt

k
P S k T k S k T k

C S k k k C k

C S k k C S k S k k

C T k k k C k

δ

λ

δ

λ

Ω =

− −

− −

+ +

+

△

△

mod mode move( ( ), ) ( ( ), ( ), )
t t

l e m
C T k k C T k T k k+

   (8) 

 

where 
mod mod move movedet( ( ( ), ( ), ( ), ( )))e eP S k T k S k T k  is 

the determinant of the a posterior covariance matrix when 

sensor s is in  mod ( )eS k  and target is mod ( )eT k . 

mod( ( ), )s

o eC S k k  is the sensor operation cost at time step 

k  in mode 
mod ( )eS k .  In (8) ( )s

kδ  is defined as 

mod mod

1,    if  1

( ) 1,    if ( ) ( 1) and 2

0,    else

s

e e

k

k S k S k kδ

=


= ≠ − ≥



        (9) 

and ( )s

cC k  is the cost related to changing mode; 

mod( ( ), )s

l eC S k k  is the cost related to taking one mode 

continuously for more than one time step;  
s

kt∆  is the 

number of the time steps that sensor continuously takes 

mod ( )eS k ; 
sλ  is the corresponding base of the 

exponential function. The reason why we should consider 

such long-term cost is that under some situations, staying 

in one mode for too long does hurt. For example, a sensor 

might not be able to operate in one mode continuously 

since long time operation can cause overheating and thus 

the sensing accuracy can not be guaranteed. Similarly, a 

smart target might want to choose to hide itself when it 

detects that a sensor keeps tracking it. However, such 

“hide” mode might require the target to stay somewhere or 

move very slowly since the target must obey certain order 

such as “reach some as quick as possible”. As a result, we 

assume that the longer it operates in one mode, the more 

marginal penalty it will undertake. For many situations 

such marginal penalty can be approximated by the 

exponentially increasing factor. For cases in which there 

are no such penalty, 
sλ  can be set to 0 (no penalty) or 1 

(not exponentially increasing). mode move( ( ), ( ) )s

mC S k S k k  

is the cost of movement, if the sensor is mobile. It is in 

mode move( ( ), ( ) )s

mC S k S k k  term where the terrain 

information and constraints should be incorporated. For 

simple cases, such costs can be looked up from a table. 

Note that the meanings of ( )t

cC k , mod( ( ), )t

l eC T k k , 

mod( ) ( ( ), )λ
t
ktt t

l eC T k k , and 
mode move( ( ), ( ), )t

mC T k T k k  can 

be explained symmetrically. 

    The payoff function which will be maximized by the 

target is defined as the negative of the sensor payoff: 

 
1

1 ( )
k H

t s n s

k k

n k

nβ
+ −

−

=

Ψ = −Ψ = − Ω∑               (10) 

    After setting up the payoff function, the self-stable Nash 

solution [11], which includes at which time the entity 

(sensor or target) should take which mode and move to 

where, can be calculated assuming both parties have the 

complete knowledge of the game (that is, perfect 

information structure). In our simulation study (section 3), 

we assumed perfect information structure for 

simplification. 

    Such game theoretic approach can provide self-

enforcing solutions, which means when the sensor chooses 

the action corresponding to some appropriate equilibrium, 

if the target does not choose the corresponding action at 

the same equilibrium, the sensor will achieve higher payoff 

and the target will results in lower payoff. The 

disadvantage of this approach is its relatively heavier 

computational load. Usually when the target is treated as 

high-tech and high value opponent with powerful anti-

detection and calculation equipments, such game theoretic 

approach will be suitable owing to the following facts. 1) 

Such high-tech targets have the capability to play the game 

and find out the same equilibrium. 2) Such high value 

targets usually dare not take risks.   

    Sometimes, smart targets will not always choose to 

behave according to the rational game theoretic solution. 

One reason is that they may not have adequate 

computational equipment/resource to play the game, thus 

they tend to choose some relatively simpler behavior 

patterns. Another reason is that they might want to break 

the expectations from time to time so that their behaviors 

look more unpredictable, thus gain in alternative aspects 

(such as inferences about their mission, identification 

about their classes and labels, etc.). Some research [15] 

models such smart targets by assuming that they would 

change mode or state with some predetermined transitional 

probability. However, we believe that such assumption 

might not model the evasive targets “smart and dynamic 

enough”. From our perspective, for such smart targets, a 

more reasonable refined assumption to approximate their 

behavior pattern is as follows: 

    Dynamic probabilistic model: If a target has 

1 [0,  1]p ∈  confidence that it is being monitored, it will 

choose to take an action (if possible) that causes more 

tracking difficulties with  
2 [0,  1]p ∈   probability. In 
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addition,  2p  is positively correlated to 1p . That is to say, 

when 1p  increases, 2p  increases as well. Sometimes one 

can have 1 2p p= . 

    We refer to the above refined model as dynamic 

probabilistic model. Note that 1p  and 2p  are not 

predetermined and might change greatly according to the 

dynamic situations. One can see that targets in our model 

appear smarter and more dynamic, and thus more difficult 

to track. In addition, our assumption naturally fits two 

extreme conditions which can not be easily accommodated 

by existing methods: 1) when the target has absolutely no 

intelligence, we only need to set 
2p  as 0; 2) when the 

target has high intelligence and full rationality, we only 

need to set 1 2 1p p= =  so that the problem becomes one 

step look-ahead game with much less computational cost. 

In either extreme case, the optimization procedure remains 

the same. Moreover, the above model is still simple and 

easy to implement, which makes it more attractive to 

ordinary smart targets. As a result, this method will also be 

suitable to analyze most situations with low-tech or low 

value smart targets.  

    The following analysis is based on the new target 

behavior model. Clearly, a sensor should choose the 

strategy that can maximize the payoff which is calculated 

according to some predicted probability: 

 

tMODE 1
, 1

1 1 2 1

( 1, 2) ( )
tMOVE k H

s new t n s

k k

m m n k

q m m nβ
+ −

−

= = =

 
Ψ = Ω 

 
∑ ∑ ∑    (11) 

where tMODE  is the number of the target 

modes, ;
tMOVE is the number of target move; 

( 1, 2)t

kq m m  is the probability that the target will choose 

tMODE   and 
tMOVE  at time step k . The definition of 

( )Ω ⋅s
 is same as in the game theoretic approach. Note that 

the  mod ( )eT k  in the definition of ( )Ω ⋅s
 corresponds to 

1m . All other definitions follow the notations used before. 

    In practical applications, when it is difficult to 

determine which kinds of targets they are, mature learning 

mechanisms such as the fictitious play [17] need to be 

applied to help make a decision. 

 

3 Simulation study 

    We implemented a prototype of the proposed HSM 

sensor management scheme. For simplicity, we emphasize 

a 10 sensor example, with a predefined sensor assignment 

case, with a two mode system. HSM first performs sensor 

assignment, then performs sensor scheduling based on the 

assigned sensor-target pairs 

    The output of sensor assignment module is a matrix A 

with non-negative integers. The columns are for targets. 

The rows are for sensors.  Each element, ija , of the matrix 

A  indicates how many channels of sensor i have been 

assigned to target j. As a result, ija  is nonnegative and no 

larger than the maximum channel capacity of the sensor. 

    A typical solution to sensor assignment problem for a 

single-channel is shown in Table 1 where each sensor has 

only one channel.  

Table 1  Single channel sensor assignment 

 T 1 T 2 T 3 T 4 T 5 

S 1 0 0 1 0 0 

S 2 0 0 0 0 1 

S 3 0 1 0 0 0 

S 4 1 0 0 0 0 

S 5 0 0 0 1 0 

S 6 0 0 0 0 1 

S 7 1 0 0 0 0 

S 8 1 0 0 0 0 

S 9 1 0 0 0 0 

S 10 1 0 0 0 0 

 

  A typical solution for a multi-channel sensor assignment 

problem is shown in Table 2 where each sensor can have 

more than one channel. In this simulation study, the 

numbers of sensor channels are randomly generated.   

Table 2  Multiple channel sensor assignment 

 T1 T 2 T 3 T 4 T 5 

S 1 1 1 0 0 1 

S 2 0 0 2 0 1 

S 3 4 0 0 0 0 

S 4 0 1 0 0 0 

S 5 0 5 0 0 0 

S 6 0 2 0 0 0 

S 7 1 0 1 3 0 

S 8 4 0 0 0 0 

S 9 1 0 0 0 0 

S10 4 0 0 1 0 

 

    In simulations with the implemented prototype for 

sensor scheduling module, we assume a sensor has two 

modes. Mode 1 is a mode that provides better covariance 

but is easily being detected by smart target (for example, 

the sensor emits strong signals – active mode). Mode 2 is 

just the opposite. For example, the sensor is operating on 

the passive mode. Similarly, a target is assumed to be 

“smart” (the pure game case or the dynamic probabilistic 

model) and also has two modes. Mode 1 is easy to be 

tracked but easy to operate. Mode 2 is more like a “hide” 

mode which is difficult to be tracked but more expensive 

to operate or persist. Entities are assumed to be able to 

move in 3D spaces with different cost of movement related 

to the motion toward different direction.  

    Table 3 and Table 4 are for the pure game situation, 

with look ahead horizon H=2. 

 

Table 3:  Game sensor mode scheduling with H=2 
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Timestep index Step 1 Step 2 

Sensor mode 2 1 

Target mode 1 1 

 

Table 4:  Game sensor mode scheduling with H=2 

Timestep index Step 1 Step 2 

Sensor move Move down Move down 

Target move Move forward Move forward 

 

    We can see that to induce the target to keep mode 1, the 

sensor can first take mode 2 for 1 time step before it really 

choose mode 1, which can provide better covariance. In 

the sensor move planning results (Table 4), the different 

motions for sensor and target are partly due to simple 

practical terrain constraints: for an airborne sensor, to 

move down is relatively easier and better for achieving 

higher accuracy. However, for a ground target, to move 

forward is often the best choice for easiness and for 

completing missions. In the future terrain settings can be 

expanded to accommodate more complex geological 

information. An H=3 simulation is as follows (Table 5). 

Analysis is similar to H=2 case. 

 

Table 5:  Game sensor mode scheduling with H=3 

Timestep index Step 1 Step 2 Step 3 

Sensor mode 2 2 1 

Target mode 1 1 1 

 

    Note that if we do not consider the long time penalty in 

the payoff function, game theory would tend to 

recommend the sensor to take mode 1 and the target to 

take mode 2. This is reasonable and can be analyzed 

similar to prisoner’s dilemma [18]: if no other penalty, for 

a sensor, no matter which mode the target takes, to choose 

mode 1 is always the best choice. Similarly we can find 

that mode 2 is always the best choice for target. This is 

confirmed in the following simulation plot (Table 6): 

 

Table 6:  Game sensor mode scheduling with H=3  

Timestep index Step 1 Step 2 Step 3 

Sensor mode 1 1 1 

Target mode 2 2 2 

     

    Figure 2 and Figure 3 are for the dynamic probabilistic 

model cases (H=15). Figure 2(a) and Figure 2(b) are for a 

case in which when the sensor is in mode 1, at each 

timestep the target will have probability p=0.2 to know 

whether it is tracked. In Figure 3(a) and Figure 3(b), such 

probability is 0.01.  
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Figure 2: Probabilistically modeled sensor mode 

scheduling with p=0.2 

 

0 5 10 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
sensor mode planning

s
e
n

s
o

r 
m

o
d

e

timestep  
(a) 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
target mode planning

ta
rg

e
t 
m

o
d
e

timestep
 

651



(b) 

Figure 3: Probabilistically modeled sensor mode 

scheduling with p=0.01 

    We can see that for the “probability 0.2” case, since the 

target has higher probability being tracked, the sensor 

tends to operate on mode 2 (passive mode) for more time 

steps. The target also chooses “hide mode” (mode 2) for 

some time steps. For the “probability 0.01” case, the 

sensor tends to operate on mode 1 (strong signal model) 

for more time steps, since the target has very small chance 

to know whether it has been tracked.  

 

4 Discussion and Conclusion 

    A game theoretic multiple mobile sensor management 

approach was proposed. Utilizing the developments from 

both information-theoretical and covariance-based sensor 

management approaches, we have formulated a scenario to 

track and identifying “intelligent” targets (ones that alter 

their behavior to signals detection). This approach can 

track smart targets under possibly adversarial 

environments. Covariance control and information 

theoretic sensor assignment were combined in a coherent 

manner where targets were modeled as entities with 

different levels of intelligence. Simulations illustrate the 

applicability of this approach.  

    Future work will be focused on incorporating a more 

general analysis of meaningful performance metrics, 

computational requirements, and joint control and 

estimation. In addition, incorporating a variety of tracking 

methods (e.g., Multiple Hypothesis Tracker, Interacting 

Multiple model, Joint Probabilistic Data Association 

Filter) as well as identification algorithms (PCA, Mutual 

Information, etc) with the hierarchical sensor management 

for smart targets will allow us to gain insights from 

empirical performance bounds on temporal/spatial/spectral 

tradeoffs as well as theoretical bounds (e.g., Cramer-Rao 

lower bound). 

 

5 Acknowledgements 

    This research was supported in part by the Air Force 

under contract number FA8650-07-M-1161. The views 

and conclusions contained herein are those of the authors 

and should not be interpreted as necessarily representing 

the official policies or endorsements, either expressed or 

implied, of the Air Force.  

     

References 

[1] M. K. Kalandros, L. Trailovic, L. Y. Pao, and Y. Bar 

Shalom, “Tutorial on Multisensor Management and 

Fusion Algorithms for Target Tracking,” Proceeding 

of the 2004 American Control Conference, Boston, 

Massachusetts, June 30-July 2, 2004. 

[2] J. Nash, “Optimal Allocation of Tracking Resources”, 

Proceeding of IEEE Conference on Decision and 

Control, New Orleans, LA, pp. 1177-1 180, 1977. 

[3] W. Schmaedeke, “Information-based Sensor 

Management,” Proc. of SPIE., 1955. 1993. 

[4] M. Kalandros and L. Y. Pao, “Covariance Control for 

Multisensor Systems,” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 38, 2002. 

[5] D. P. Bertsekas, Dynamic Programming and Optimal 

Control, Vols. 1 & 2, 2nd ed. Athena Scientific, 2000. 

[6] Y. Li, L. W. Krakow, E. K. P. Chong, and K. N. 

Groom, “Dynamic Sensor Management for 

Multisensor Multitarget Tracking,” 2006 40th Annual 

Conference on Information Sciences and Systems, 

Princeton, NJ, 22-24 March 2006, pp.1397-1402. 

[7] A. Doucet, N. de Freitas and N. Gordon, Sequential 

Monte Carlo Methods in Practice, Springer, 2001. 

[8] D. H. Nguyen, J. H. Kay, B. J. Orchard, and R. H. 

Whiting, “Classification and Tracking of Moving 

Ground Vehicles,” Lincoln Laboratory Journal, Vol 

13, No. 2, 2002.  

[9] T. Vercauteren, D. Guo, and X. Wang, “Joint 

Multiple Target Tracking and Classification in 

Collaborative Sensor Networks,” IEEE Journal on 

Selected Areas in Communications, Vol. 23, No. 4, 

April 2005. 

[10]  J. Dowdall, I. T. Pavlidis, and P. Tsiamyrtzis, 

“Coalitional Tracking in Facial Inferred Imaging and 

Beyond,” Proc. of the 2006 Conference on Computer 

Vision and Pattern Recognition Workshop, 2006.  

[11]  C. Camerer, Behavioral Game Theory, Princeton 

University Press, 2003. 

[12]  G. Bendall and F. Margot, Greedy Type Resistance of 

Combinatorial Problems, Discrete Optimization, 

pp.288-298, 2006. 

[13]  M. Irani and P. Anandan, “Robust MultiSensor 

Image Alignment,” Available at 

http://www.wisdom.weizm 

ann.ac.il/~irani/PAPERS/multiSensorAlignment.pdf. 

[14]  W. Schmaedeke and K. Kastella. “Information Based 

Sensor Management and IMMKF: Proc. SPIE Conf 

Signal Processing of Small Targets, Vol. 3373, 

Orlando. FL. pp. 390-401. 1998. 

[15]  C. Kreucher, D. Blatt, A. Hero, and K. Kastella, 

“Adaptive Multi-modality Sensor Scheduling for 

Detection and Tracking of Smart Targets,” Digital 

Signal Processing, Elsevier, 2005. 

[16]  K. C. Chang, “Level I and Level II Target Valuations 

for Sensor management,” Journal of Advances in 

Information Fusion, Vol. 1, No. 2, Dec. 2006. 

[17]  D. Fudenberg, and D. K. Levine, The Theory of 

Learning in Games. Cambridge: MIT Press, 1997. 

[18]  A. Tversky, Preference, Belief, and Similarity, 

Selected Writings. MIT Press, 2004. 

652


